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Abstract 

EVIDENCE FOR ABSENCE OF LATCHBRIDGE FORMATION IN PHASIC 

SAPHENOUS ARTERY 

By Shaojie Han, B.M., M.M. 

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2005 

Major Director: Paul H. Ratz Ph.D. 
Professor, Department of Biochemistry and Pediatrics 

Tonic arterial smooth muscle can produce strong contractions indefinitely by formation of 

slowly cycling crossbridges (latchbridges) that maintain force at a high energy economy. 

To fully understand the uniqueness of mechanisms regulating tonic arterial contraction, 

comparisons have been made to phasic visceral smooth muscles that do not sustain high 

forces. This study explored mechanisms of force maintenance in a phasic artery by 

comparing KC1-induced contractions in the tonic, femoral artery (FA) and its primary 

branch, the phasic saphenous artery (SA). KC1 rapidly (<I6 sec) caused strong increases in 

stress (1.2 x 10' ~ / m ~ )  and [ca2']i (250 nM) in FA and SA. By 10 min, [ca2+], declined to 



www.manaraa.com

xi 

175 nM in both tissues but stress was sustained in FA (1.3 x 1 o5 N/m2) and reduced by 

40% in SA (0.8 x lo5 N/m2). Reduced tonic stress correlated with reduced myosin light 

chain (MLC) phosphorylation in SA (28% vs. 42% in FA). SA expressed more MLC 

phosphatase than FA, and permeabilized (p-escin) SA relaxed more rapidly than FA in the 

presence of MLC kinase blockade, suggesting that MLC phosphatase activity in SA was 

greater than that in FA. The reduction in MLC phosphorylation in SA was insufficient to 

account for reduced tonic force (latchbridge model), and SA expressed more "fast" myosin 

isoforms than did FA. Cytochalasin-D reduced force-maintenance more in FA than SA. 

These data support the hypothesis that strong force-maintenance is absent in SA because 

expressed motor proteins do not support latchbridge formation, and because actin 

polymerization is not stimulated. 
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CHAPTER 1 INTRODUCTION 

1.1 smooth muscle force maintenance and the latch state 

The smooth muscle cell of hollow organs must alter and set organ dimensions by 

contracting tonically against imposed loads. The economy of force maintenance is 

important for this purpose. Comparing to striated muscles, smooth muscles reveal striking 

differences in their economies of contraction. With less ATP consumption, the isometric 

contraction induced by 109mM K+ can be maintained for at least 2 hours with little 

changes. Apparently, tonic smooth muscles benefit from this energy-saving contractile 

style, and play their biological role by maintaining tonic stress without fatigue. To explain 

this rather remarkable property of arterial smooth muscle, the latch bridge hypothesis, 

(slow detachment of dephosphorylated crossbridges) was proposed about 25 years ago. 

There are two phases that typically characterize the contractile response of tonic arterial 

smooth muscle to a stimulus such as KC1. The initial transients in cytosolic free ca2+ 

([ca2+]i), myosin light chain (MLC) phosphorylation, crossbridge cycling rates are 

associated with rapid stress development. Then stress is maintained during the continued 

presence of the stimulus in the steady-state despite-reductions in [ca2+]i, MLC 
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phosphorylation and crossbridge cycling rates and rate of ATP consumption. The steady- 

state phase was termed the latch state, which parallel the catch state in the muscles closing 

the shells of certain mollusks. 

Force maintenance by tonic arterial muscle is attributed to the formation of 

latchbridges ((Dillon, Aksoy et al. 1981; Hai and Murphy 1988; Ratz, Hai et al. 1989) and 

reviewed by (Hai and Murphy 1989). A four-state kinetic model (Fig 1) was established by 

Hai and Murphy in 1988 to describe the latch bridge hypothesis. 

Figure 1. Structure of Hai-Murphy latchbridge model. A, Actin ( thin filament); M, 
detached dephosphorylated cross bridge; Mp, detached phosphorylated cross bridge; 
AMP, attached phosphorylated cross bridge; AM, attached dephosphorylated cross 
bridge (latch bridge). Hai, Murphy, Am. J. Physiol. 254:C99-ClO6, 1988 

The Hai-Murphy model depicted two types of crossbridge interactions: I) cycling 

phosphorylated cross bridges (A+Mp*AMp) and 2) noncycling dephosphorylated 

crossbridges (latch bridges, AM+A+M). The major assumptions are that I) ca2+- 

dependent myosin phosphorylation is the only postulated regulatory mechanism; 2) each 

myosin head acts independently; 3) latch bridges are formed by dephosphorylation of an 

attached cross bridge; 4) AM+A+M is irreversible. Cross bridges cannot attach to -the thin 
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filaments to form force-generating states unless they are first phosphorylated; 5) All 

reactions exhibit first-order kinetics; 6) Total myosin phosphorylation equals Mp+AMp 

and stress equals AM+AMp; 7) The affinities of MLC Kinase (MLCK) and MLC 

phosphatase (MLCP) for detached and attached cross bridges'are similar and set as K1=K6 

and K2=K5; 8) the initial conditions for relaxed tissues are: [M]=l .O, 

[Ap]=[AMp]=[AM]=O, (K1=K6 =O corresponding to a [ca2+]1 below the threshold for 

MLCK activation. Rates constants were resolved by fitting data on the time courses of 

myosin phosphorylation and stress development. 

This kinetic model can be described by four differential equations: 

d[M]ldt=-K1 [M]+K~[MP]+K~[AM] (1) 

d[Mpl/dt=K4[AMpl+K1 [Ml-(K2+K3)[Mpl (2) 

d[AMp]ld~K3 [Mp]+& [AM]-(K4+K5) [AMP] (3) 

d[AM]ldt=K5 [AMP] -(K7+K6) [AM] (4) 

A latchbridge has not been biochemically isolated for study, and the latchbridge 

model, although strongly supported (Rembold and Murphy 1990; Yu, Crago et al. 1997; 

Butler, Mooers et al. 1998; Mijailovich, Butler et al. 2000), is not universally accepted. 

(Butler, Siegman et al. 1986; Kenney, Hoar et al. 1990; Paul 1990). Butler and co-workers 

suggested that the cycling rate of given myosin head, regardless of its phosphorylation 

state, depends on the fraction of phosphorylated heads in the ensemble and is thus 

modulated as the extent of phosphorylation changes during a contraction. 

However, recent kinetic biochemical studies support the concept of a high duty 

cycle for smooth muscle crossbridges (Khromov, Somlyo et al. 1995; Conibear 1999; 
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Gollub, Cremo et al. 1999; Baker, Brosseau et al. 2003). The Somlyos and their co- 

workers proposed that latch results from the prolonged attached lifetime of myosin binding 

with thin filament due to the high ADP affinity of minus-insert myosin (Fuglsang, 

Khromov et al. 1993). As the level of myosin phosphorylatidn declines with prolonged 

stimulation, the rate of cross bridge attachment is slowed significantly. Myosin 

dephosphorylation and the reduction in the cross bridge attachment rate results in a 

concomitant reduction in the ADP release rate, prolonging the force-bearing strong 

binding states, which will be mentioned again in Section 1.5. 

1.2 Phasic and Tonic Smooth Muscles 

The time-course, or profile, of an isometric smooth muscle contraction in response 

to KC1 can be divided into an early, phasic portion reflecting the rapid increase in force to 

an initial high peak level upon initial muscle stimulation, and the steady-state, tonic portion 

during sustained stimulation reflecting the level of force that can be maintained by the 

n~uscle. Smooth muscles have been categorized as phasic or tonic, depending on the 

kinetics of force development, and whether the predominant KC1-induced force-profile 

reveals, respectively, a stronger phasic- than tonic-phase, or a tonic-phase that is at least 

equivalent to the strength of the peak contraction during the phasic phase (Somlyo and 

Somlyo 1968; Somlyo and Somlyo 1968). Smooth muscles belonging to the phasic group 

include most visceral muscles and the portal vein which contract rapidly and do not 

maintain force at high levels for long durations (Himpens, Matthijs et al. 1988). Tonic 
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smooth muscles are generally represented by arterial and airway smooth muscles (Horiuti, 

Somlyo et al. 1989). 

Previous studies on regulatory mechanisms controlling tonic arterial and phasic 

visceral smooth muscle contractions suggested that at least elevated calcium levels, 

elevated MLC phosphorylation, or reduced crossbridge kinetics contribute to the tonic 

muscle force maintenance. 

1.3 regulation of [ca2+]i in phasic and tonic smooth muscles 

In the 1800 s, elevated [ca2']i were considered as the primary regulator of muscle 

contraction (Reference: Ringer). More recent studies from Kathy Morgan's and Andrew 

Somlyo's laboratories, and others, showed using the photoprotein, aequorin and ca2' 

indicators, quin-2 and fura-2, that the resting [ca2+]i were 10618 nM in tonic smooth 

muscle (rabbit pulmonary artery) and 79 * 6 nM in phasic smooth muscle(i1eum). In the 

phasic smooth muscle, the initial ca2' spike (374 * 46 nM) was accompanied by an early 

force transient, maximum force, but in the tonic smooth muscle the initial ca2' spike (390 

1 34 nM) was accompanied by only about 48% of maximum force. After a transient peak, 

there was a decline to 70% of [ca2']i peak value in tonic smooth muscle, and to 60% in 

phasic smooth muscle (Himpens and Somlyo 1988). Another example observed in a phasic 

muscle of canine antrum is a temporal change in ca2+ sensitivity; ca2+ sensitivity initially 

increases and then decreases during the spontaneous rhythmic contractions (Ozaki and 

Karaki 1993). In other words, [ca2']i differences between phasic and tonic smooth muscle 

might determine their contractile characteristics. 
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Moreover, the sarcoplasmic reticulum also plays a major role in the regulation of 

ca2' in the smooth muscle. Structural and functional studies indicate the important role of 

the sarcoplasmic reticulum in excitation-contraction coupling in smooth muscles. As a 

source and sink of the ca2+, sarcoplasmic reticulum modulate the [ca2+]i through inositol- 

1,4,5-triphosphate (InsP3) and ryanodine receptors and a c a 2 + - ~ ~ p a s e  (SERCA) localized 

to its membranes. In smooth muscle ca2' is released mainly by stimuli that generate InsP3, 

which was distinguished from ca2+-induced ca2+ release in striated muscle. Gene knockout 

mice have been reported for SR-associated protein, phospholamban, an inhibitor of 

SERCA2. Phospholamban can regulate both phasic and tonic smooth muscle contractility 

via modulation of SERCA(Pau1, Shull et al. 2002). Gene-altered animal models have 

provided evidence clearly implicating the SR as a key modulator of smooth muscle ca2+ 

and contractility, with the caveat that this modulation is tissue specific. 

1.4 ca2+ sensitization and desensitization: regulation of MLC phosphorylation ratio 

It is generally accepted that ca2' sensitization and desensitization involve the major 

physiological mechanisms that regulate myosin activity: phosphorylation and 

dephosphorylation. Phosphorylation of MLC at Ser-19 permits myosin activation by actin, 

whereas dephosphorylation inactivates actin-activated myosin ATPase. G protein-coupled 

receptor (GPCR) agonists induce smooth muscle contraction by elevating [ca2+], and by 

causing increased in ca2+ sensitivity. ca2+ sensitization can also be produced by high K+- 

induced contraction partly due to RhoA, RhoA associated kinase (ROK) and it's 

translocation resulting from the increase of [ca2+]i, (Urban, Berg et al. 2003). Thus, the 
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relative activity of the MLCK and MLCP is the major factor regulating the MLC 

phosphorylation and contraction (Somlyo and Somlyo 2003) (Fig 2). 

cription Myosin II RLCm 

~untraction 
Stress fibers 
Cell Migration 

Y-27632 - M Y P T I ~  + 
(Inhibited) 

Figure 2. Signaling pathway for ca2+ sensitization in smooth muscle. Activation GPCR 
initiates signaling through the cascades that inhibit MLCP, increase MLC 
phosphorylation and contraction. Somlyo and Somlyo, Physiol Rev. 83: 1328-58, 2003 

It has been suggested that the ca2' sensitivity of force might differ between phasic 

and tonic smooth muscle (Gong, Cohen et al. 1992; Gong, Fuglsang et al. 1992). By 

studying P-Escin and a-toxin perimerablized femoral artery and ileum smooth muscle of 

guinea pig, Gong MC et a1 reported that tonic smooth muscle is more sensitive to the 

phosphatase inhibitors than phasic smooth muscle. The relaxation rate and 
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dephosphorylation rate are faster in phasic than tonic smooth muscle. MLCP and MLCK 

activities are 2.0- and 1.9-fold higher respectively in phasic than tonic smooth muscle. 

Since MLC phosphorylation turnover rate and phosphorylated MLC ratio largely, though 

not solely, depends on the enzyme kinetics and relative activi'ty of MLCP and MLCK., the 

higher MLCP and MLCK activity, as well as the MLCPMLCK constant rate might 

contribute to the lower steady state values of MLC phosphorylation and force in the phasic 

smooth muscle. What causes the differences in MLCP and MLCK activity between phasic 

and tonic smooth muscle, and especially between phasic and tonic arterial smooth muscle, 

remains to be fully understood. 

Telokin, a 17-kDa acidic protein whose sequence is identical to the COOH 

terminus of MLCK, was proposed to induce ca2+ desensitization. The expression of telokin 

is independently through a promoter located in intron of the MLCK gene. (Ito, Dabrowska 

et al. 1989) As a substrate of PKA and PKG, it is phosphorylated at Ser-13 in vivo, and it 

mediates 8-Br-cGMP induced smooth muscle relaxation by activating MLCP leading to 

the decrease of MLC phosphorylation. Studies show that telokin is highly expressed in 

visceral and venous smooth muscles which are phasic, compared with tonic femoral artery 

smooth muscle. The phasic ileum has 4.5 fold more telokin with two fold greater MLCP 

activity (Gong, Cohen et al. 1992) than the tonic femoral artery. However, the mechanism 

whereby telokin activates MLCP activity remains to be determined. 

ROK activation, and PKC-dependent CPI-17 phosphorylation, lead to inhibition of 

MLC phosphatase and sustained MLC20 phosphorylation and contraction (Kitazawa, Eto 

et al. 2003; Huang, Zhou et al. 2005). Thiophosphorylated CPI-17 inhibits PPlc about 
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7,000-fold more efficiently than the nonphosphorylated form (Eto, Senba et al. 1997). The 

expression of CPI-17 and MYPTl are tissue specific. It was found that vascular muscles 

contained more CPI-17 than visceral muscles, and phosphorylation of MYPTl Thr(850) 

and CPI-17 Thr(38) contribute more to the inhibition of MLdP in vascular muscles than in 

visceral muscles. Moreover, the tonic femoral artery possessed approximately 8 times the 

cellular CPI-17 concentration of the phasic vas deferens. In contrast to CPI-17, phasic 

muscles contained more MYPTl than tonic tissues (Woodsome, Eto et al. 2001). From the 

protein expression patterns, it is possible that CPI-17 and MYPT1 contribute to the 

regulation of the smooth muscle phasic and tonic contractile behavior. 

1.5 Myosin Isoforms are responsible for crossbridge kinetics 

In tonic, compared with phasic, smooth muscles the affinity of crossbridges is 

approximately 5 times higher for MgADP and the apparent second-order rate constant for 

MgATP is approximately 3 times lower (Fuglsang, Khromov et al. 1993), which could be 

the molecular basis of the 'latch'. Reduced crossbridge kinetics may be the result of 

differences in motor protein isoform expression (Rovner, Freyzon et al. 1997; Lauzon, 

Tyska et al. 1998; Szymanski, Chacko et al. 1998; Baker, Brosseau et al. 2003). 

Myosin is a member of a large family of motor proteins with a similar molecular structure, 

composed of two myosin heavy chains (MHCs) and two pairs of myosin light chains 

(MLCs). Smooth muscle expresses several different MHC and MLC isoforms: six MHC 

isoforms (four smooth muscle, two nonmuscle) and five MLC isoforms (two 17 kDa, two 

20 kDa, one 23 kDa). 



www.manaraa.com

1.5.1 MLC17 isoforms 

It was proposed that the isoforms of 17-kDa essential light chain of myosin 

(MLC 17) is the major factor determining the MgADP affinity of myosin. Two MLC 17 

isoforms, acidic (MLC17a) and basic (MLC17b) isoforrns, are products of a single gene 

generated by an alternative splicing mechanism, but differ in the substitution of five of the 

last nine amino acids at their carboxy termini. Phasic muscle was reported containing more 

MLC17a than MLC17b. Increasing myosin ATPase activity and faster movement are 

associated with MLC 17a. Results from MLC 17 isoforms exchange studies (Matthew, 

Khromov et al. 1998) show that the shortening velocity and rate of force development were 

approximately 1.5 and 2 times faster, respectively, in response to MLC 17a than MLC 17b 

in crossbriges with nonphosphorylated MLC, suggesting MLC17 isoforms contribute to 

the nucleotide affinity of latch bridges (Somlyo, Matthew et al. 1998). 

1.5.2 Smooth muscle myosin heavy chain isoforms 

Smooth muscle MHC isoforms result from the splicing of the single gene. 

Alternative splicing near the 3' end of the MHC pre-mRNA results in expression of either 

one of two proteins, SMl (204 kDa) or SM2 (200 kDa), differing only at their carboxy 

termini. Although studies in permeabilized tissue strips show that SMllSM2 isoforms 

related with ATPase activity and shortening velocity (Hewett, Martin et al. 1993), in vitro 

study on purified protein and single cells suggested these isoforms results in similar in 

vitro ATPase activities (Meer and Eddinger 1997). 

Splicing at the 5' alternative splice site of the MHC gene results in two isoforms 

differing in the insertion (SMB) or on~ission (SMA) of 7- amino acids near the putative 
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ATP binding site. Expression of SMB is associated with a higher myosin ATPase activity, 

faster movement of actin filaments in in vitro motility assays (Kelley, Takahashi et al. 

1993), and faster maximum shortening velocity (Eddinger and Meer 200 1). Bladder from 

SMB KO mouse shorten slower than that from wildtype with' SMB expression, consistent 

with SMB determining the shorten velocity of smooth muscle (Karagiannis, Babu et al. 

2003). 

1.5.3 Non-Muscle Myosin Heavy Chain 

Tonic force maintenance has also been attributed to recruitment of non-muscle 

myosin (Morano, Chai et al. 2000; Lamounier-Zepter, Baltas et al. 2003) and reviewed by 

(Morano 2003)). Nonmuscle-MHC can form thick filaments in smooth muscle cells of 

SM-MHC-deficient bladders. Nonmuscle myosin generated active force which was 

significantly lower and slower, and lacked an initial peak (Lofgren, Ekblad et al. 2003). It 

was suggest high ADP binding and low phosphate dependence of nonmuscle myosin 

would promote economical force maintenance of the cell. 

Myosin isoforms and nonmuscle myosin might substantially influence the 

crossbridge kinetics. They could be the underlying molecular basis of latch. How they 

coexpress by tissue-specific pattern and how they determine the crossbridge kinetics, are 

still questions that need to be resolved. 

1.6 Thin filament regulatory proteins and cytoskeletal alterations 

An early hypothesis suggested that a filamin-actin-desmin domain participates in 

tonic force-maintenance (reviewed by (Rasmussen, Takuwa et al. 1987)), and a recent 
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study using stiffness measurements suggests that a non-crossbridge component can 

participate in receptor agonist-induced maintenance of tonic contraction (Rhee and 

Brozovich 2003). There is compelling evidence that thin filament regulatory proteins 

participate in regulation of contraction (Marston, Pinter et a1. '1992; Haeberle 1994; Obara, 

Szymanski et al. 1996; Earley, Su et al. 1998; Yan, Sen et al. 2003; Hai and Kim 2004), 

and although their principal action may be to maintain smooth muscle in the relaxed state 

((Albrecht, Schneider et al. 1997; Malmqvist, Trybus et al. 1997; Lee, Gallant et al. 2000) 

and reviewed by (Trybus 1991)), there is evidence that thin filament regulatory proteins 

may also play a role in force-maintenance by cross-linking actin and myosin ((Sutherland 

and Walsh 1989; Walsh and Sutherland 1989) and reviewed by (Szymanski 2004)). 

Tropomyosin (Tm), in striated muscle, provides the calcium switch for turning 

myosin ATPase activity on and off by interacting with troponin complex, but its function 

in smooth muscle is less clear because no troponin was found. However, some evidence 

shows that Tm has a cooperativity function in smooth muscle contraction. Binding of 

smooth muscle myosin and actin leads to the helpful movement of Tm, which is also 

facilitated by myosin phosphorylation. 

Caldesmon (CalD) is an actin, Tm, myosin, and calmodulin binding protein. Its 

carboxy-terminal domains are responsible for inhibition of ATPase activity in vitro. 

Binding calmodulin or phosphorylation of sites between two actin-binding domain can 

reverse some of the inhibitory activity of CalD in vitro. In vivo studies from peptide 

antagonist approaches and antisense oligonucleotides suggests that, indeed, CalD is 

involved in suppressing smooth muscle tone. 
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Calponin (CalP) has amino acid sequences which shows high degree of structure 

homology to the inhibitory site of troponin-I. Binding with thin filament, CalP inhibits 

crossbridge cycling and acts as a load-bearing protein. 

SM22 is an abundant, smooth muscle-specific, 22-kDa protein with unknown 

function. Whether or not SM22 serve as a functional thin filament regulatory protein is 

controversial. Although SM22-deficient mouse did not show obvious functional 

abnormalities in either visceral or vascular smooth muscle, changes in the thin filament 

distribution was observed, suggesting the possible role for SM22 in cytoskeletal 

organization. 

Some of chaperon proteins, such as heat shock proteins (HSP20) and (HSP27) 

were also reported to modulate the myosin and actin interaction through thin filament 

regulatory mechanisms, when they are phosphorylated by signaling molecules(Bitar 2002; 

Meeks, Ripley et al. 2005). 

Tonic force maintenance has also been attributed to cytoskeletal alterations 

involving changes in microfilament and microtubule polymerization (Wright and Hum 

1994; Battistella-Patterson, Wang et al. 1997; Mehta and Gunst 1999; Flavahan, Bailey et 

al. 2005). 

The field of thin filament regulation of smooth muscle contractility is filled with 

controversy. However, these novel regulatory mechanisms provide new approaches to 

explain the latch bridges and steady-state force maintenance. 

1.7 Objective 
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Regulation of phasic visceral smooth muscle appears to be considerably different 

than regulation of tonic arterial smooth muscle (Harnett, Cao et al. 2005)+. Also, rhoA 

kinase (ROK) plays a prominent role in regulation of the tonic-phase, but not the early 

phasic-phase of arterial contractions (reviewed by (Ratz, Berg et al. 2005)), but participates 

in both phasic- and tonic-phases of contraction in the phasic detrusor smooth muscle 

((Ratz, Meehl et al. 2002) and figure 6 of this study). Moreover, although arterial smooth 

muscle is generally classified as tonic muscle, arterial smooth muscles from some vascular 

beds, such as mesenteric artery, are phasic, and the degree of phasic activity is more 

pronounced in smaller than larger arteries (Asano and Nomura 2003). What remains is to 

delineate the subcellular regulatory mechanisms directing an artery to contract in a tonic or 

phasic fashion. 

The goal of this study was to identify the subcellular mechanisms causing tonic and 

phasic arterial smooth muscle contractions. We discovered that the rabbit saphenous artery 

(SA), a muscular branch of the tonic femoral artery (FA), contracts in a phasic manner. By 

studying tonic FA and phasic SA, we were able to use arterial smooth muscles from the 

same vascular bed to directly identify and compare the underlying mechanisms controlling 

phasic and tonic contractile behaviors. 
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CHAPTER 2 MATERIALS AND METHODS 

2.1 Tissue Preparation 

Tissues were prepared as previously described (Ratz 1993). New Zealand white 

rabbits (3-4 kg) were anesthetized and killed as approved by the Medical College of 

Virginia at Virginia Commonwealth University Institutional Animal Care and Use 

Committee protocol #0305-3208. Smooth muscle tissues were dissected and stored in cold 

(4C0) physiological saline solution (PSS; in mM: 140 NaCI, 4.7 KCI, 1.2 MgS04, 1.6 

CaC12, 1.2 NaHP04, 2.0 MOPS adjusted to pH 7.4, 0.02 Na2EDTA to chelate heavy 

metals, and 5.6 D-glucose). High-purity (1 7 MR) deionized water was used throughout the 

study. Fat and adventitia were removed mechanically under a binocular dissecting 

microscope (Olympus SZX12), and for all arteries, the endothelium was removed by 

gentle rubbing of the intimal surface with a rough metal rod approximately the size of the 

arterial lumen diameter. Arteries were cut with dissecting scissors into 2-3 mm-wide rings. 

Detrusor strips free of underlying urothelium were dissected from bladders from which the 

serosa was removed. 
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2.2 Isometric Force 

Contractile force (F) was measured as previously described (Ratz 1993). Each 

muscle was mounted in a tissue bath in a Myograph System-610M (Danish Myo 

Technology, Denmark) between two stainless steel hooks, one of which was attached to a 

n~icron~eter for length adjustments and the other to an isometric force transducer for force 

measurements. Voltage signals from the Myograph were digitized and visualized on a 

computer screen as F (in g). Data were acquired through an analog-digital converter board 

(National Instruments) and analyzed using DASYLab (DasyTech, Amherst, NH) and 

Microsoft Excel (Microsoft) software. Following equilibration for 1 hour at 37OC in 

aerated PSS, the muscle length for which active force was maximum (Lo) was determined 

for each tissue using an abbreviated length-tension curve and KPSS (PSS in which 1 10 

mM KC1 was substituted isosmotically for NaCl) as the stimulus (Herlihy and Murphy 

1973; Ratz and Murphy 1987). In order to eliminate effects of norepinephrine released 

from periarterial nerve terminals, 1 pM phentolamine was used to block the a1 -adrenergic 

receptors. To prevent acetylcholine-induced activation of detrusor strips upon KC1 

stimulation, 1 pM atropine was included in the bath solution. To measure muscle stress (F / 

cross-sectional area), at the end of the experiment, wet weight (mg) was recorded for each 

tissue, and muscle stress (S) in ~ / m '  was calculated as (F (g) x 9 . 8 0 7 ~  N / g) / ((wet wt 

(mg) / Lo (mm)) x 9 . 5 2 ~  1 o - ~  m2.mm / mg). 

2.3 Tissue Histology 
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To measure medial wall thickness and numbers of cell layers in the media, arterial 

rings were fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer overnight, 

washed with 0.1 M cacodylate buffer for 5-10 minutes, and then fixed by 1% osmium 

tetroxide in 1.0 M sodium cacodylate buffer for 1 hour at 4'C. Tissues were dehydrated by 

exposure to 50,70, 80, and 90% ethanol for 5-10 min each followed by three changes of 

100% ethanol for 10-20 minutes each at room temperature. Ethanol was replaced with 3, 

10-20 minutes washes of 100% propylene oxide at room temperature before addition of a 

1 : 1 mixture of PolyBed 8 12 resin and propylene oxide for at least 4 hours. Tissues were 

embeded in molds with PolyBed 812 resin, and the molds placed in an oven at 60-65OC for 

about 24-48 hours until resin polymerization was completed. Resin blocks were cut into 1 

p-thick sections with an ultramicrotome and transferred onto a drop of distilled water on a 

clean microscope slide. Sections were covered with 0.1% Toluidine blue / 0.1% methylene 

blue / 0.1% azure I1 in 1 % sodium borate solution (Lynn, Martin et al. 1966) and heated on 

a hot plate for 3 minutes. Slides were rinsed in running water, returned to the hot plate to 

dry thoroughly, and a cover glass was affixed to each slide using a drop of Permount. Wall 

thickness of each artery was measured and the numbers of cell-layers for each cross- 

section was counted using a microscope (Olympus 1x71) and OpenLab software 

(Improvision). 

2.4 Measurements of 17 kDa MLC (MLC17) Isoform Expression and the Level of 20 

kDa MLC (MLC20-p) Phosphorylation 
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Two-dimensional (isoelectric focusing 1 sodium dodecylsulfate) PAGE was 

performed as previously described (Ratz 1993; Urban, Berg et al. 2003) to measure the 

degree of MLC20-p and the fractional expression of MLC 17a and MLC 17b isoforms. 

Arteries at Lo were quick-frozen in an acetone-dry ice slurry, warmed slowly to room 

temperature, dried, weighed, and homogenized in 8 M urea, 2% Triton X-100, and 20 mM 

dithiothreitol. Isoelectric variants of MLCs were separated by isoelectric focusing using an 

ampholyte range of 4.5-5.4, and after proteins were separated according to molecular 

weight, they were transferred to Immobilon membranes (Millipore Co. Bedford, MA) by 

electrophoresis, then visualized using colloidal gold total protein stain (Bio-Rad Lab, 

Hercules, CA). The relative amounts of phosphorylated MLC20-p and of MLC 17a and 

MLC 17b were quantified by digital image analysis (Scion Image, NIH) and calculated 

using the respective formulas: MLC20-p = MLC20-p / (MLC20-p + unphosphorylated 

MLC20), and MLC 17a = MLC 17a / (MLC 17a + MLC 17b). 

2.5 Western immunoblotting for expression analysis of MLCP and rhoA kinase a 

(ROKa) 

Expression levels of MLCP catalytic subunit 1-6 (PP1 6), MLCP regulatory 

subunit, MYPT1, and a regulator of MLCP activity, ROKa, were measured by sodium 

dodecylsulfate (SDS)-PAGE and Western blot. Arteries at Lo were frozen, dried and 

weighed as described above, then homogenized in a 1-D sample buffer solution (-400 p1 

buffer / mg tissue) containing 25 mM Tris-HC1 (pH 6 4 ,  10% glycerol, 20 mM DTT, 5 

mM EGTA, 1 mM EDTA, 50 mM NaF, 1 mM Na3V04, 0.005% bromophenol blue, 1% 
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SDS, and the protease inhibitors, Leupeptin, Aprotinin and APMSF at 20 yg / ml each. 

Proteins were separated by SDS-PAGE using 7.5% polyacrylamide for MYPT1 and 

ROKa, and 12% polyacrylamide for PPl 6, followed by transfer onto Immobilon 

membranes. Protein loading was verified to be constant across all lanes by MEMCode 

(Pierce) staining. Immobilon membranes were blocked with 5% non-fat milk in Tris- 

buffered saline containing 0.05% (w/v) Tween-20 for 1 hour and then incubated with 

primary antibodies overnight at 4OC. The following dilutions of primary antibodies were 

used: anti-PPlG at 1 :500 (Upstate), anti-MYPT1 at 1 500  (BD Transduction Laboratories), 

and anti-ROKa at 1 :200 (Santa Cruz Biotechnology). Horseradish peroxidase-conjugated 

goat polyclonal antibody was used as secondary antibody and the amounts of specific 

protein were detected by enhanced chemiluminescence (Amersham). Protein bands were 

quantified after digitization by Scion Image Software. 

2.6 PAGE and Western immunoblotting for myosin heavy chain (MHC) isoform 

expression analysis 

Rabbit tissues for protein analysis were homogenized in sample buffer containing 

0.125 M Tris, 2% sodium dodecylsulfate (wt/vol), 20% glycerol, 0.1% bromophenol blue 

(wtlvol) and 20 mM dithiothreitol. MHCs were resolved on low cross-linking sodium 

dodecylsulfate gels using the method of Giulian and colleagues (Giulian, Moss et al. 

1983), and immunoblotting was performed as previously described (Eddinger and Wolf 

1993). Polyclonal antibodies to the SMB (plus 7 amino acid head insert isoform) and SMA 

(minus 7 amino acid head insert) smooth muscle MHC isoforms were generated in rabbits 
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using the following peptides (SMA polypeptide - IN'--KKDTSITGELEC--'C'; SMB 

polypeptide -"Nu-- QGPSLAYGELEC--'CU). Antiserum was tested on ELISA against 

expressed SMA and SMB sub-fragment 1 polypeptides. Both antibodies were shown to 

have at least 100 fold higher affinity for their appropriate antigen than for the alternative 

isoforms. Smooth muscle and non-muscle MHC specific antisera were obtained from 

Biomedical Technologies (Stoughton, MA). Western immunoblots were reacted as 

reported previously (Gaylinn, Eddinger et al. 1989). 

2.7 2D proteome 

Tissues were homogenized in Rehydration Buffer (Urea 7 M, Thiourea 2 M, 0.2% 

Triton X-100, Immobilized pH Gradient (IPG) buffer 0.5%, Bromophenol Blue 0.002%, 

Na2ethylenediamine tetraacetic acid 1 mM, APMSF 20uglm1, Aprotonin 20uglm1, 

Leupeptin 20uglm1, DTT 2.8mglml) on ice. Isoelectrical focusing was run on IPG strips 

(pH 4-7, 1 lcm) in a Bio-Rad Protean IEF Cell, and proteins were separated by SDS-PAGE 

on 4-20% Criterion Tris-HCl Gels (Bio-Rad). Proteins were identified by staining with 

SYPRO Ruby (BioRad) and digital images (Molecular Imager FX, Bio-Rad) were 

analyzed using PDQuest image analysis software (Bio-Rad). 

2.8 [ca2+]i 

[ca2+]i was measured as previously described (Ratz 1993) with minor 

modifications. Tissues at Lo in an aerated muscle chamber designed for microscopic 

imaging (Danish Myo Technology, Denmark) placed on the stage of an inverted 
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microscope (Olympus 1x71) were loaded for 2.5 hours with 7.5 pM fura 2-PE3 (AM) and 

0.01% (wthol) Pluronic F-127 (TefLabs, Austin, TX) to enhance solubility. After 3, 10 

min bath changes with PSS to remove extracellular fura, the fluorescence emission at 5 10 

nm was collected by a photomultiplier tube for excitations at 340 nm and 380 nm 

(DeltaRam V, Photon Technologies Inc., Lawrenceville, NJ) and emission intensities were 

expressed as 340 nm / 380 nm ratios using Felix software (Photon Technology 

International) to measure changes in [ca2+]i. At the end of the experiment, minimum (Rmin) 

and maximum (R,,) fluorescence ratios were obtained by treating tissues with, 

respectively, a ca2'-free KPSS containing 5 mM EGTA and 30 pM ionomycin, and a high 

calcium (3.2 mM ca2+) KPSS containing 30 pM ionomycin. Background fluorescence, 

determined by incubating tissues in 4 mM MnC12 plus 30 pM ionomycin, was subtracted 

from all 340 nm and 380 nm signals prior to calculating the 340 nm / 380nm fluorescence 

ratios. Intracellular ca2+ concentrations were calculated as described by (Grynkiewicz, 

Poenie et al. 1985) using the following formula: [ca2+]i = Kd (Sf&) [(R-Rmin)/(Rm,-R)], 

where Kd (ca2+/fura dissociation constant) was estimated as 224 nM. R was the 

experimentally determined ratio of fluorescence intensities at 340 and 380 nm corrected for 

the background fluorescence at each wavelength, and Sf and Sb values were obtained from 

background-subtracted fluorescence intensity values measured during excitation at 380 nm 

during the Rmin and R,, protocols, respectively. 

2.9 Tissue permeabilization 
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Artery rings at Lo were depleted of sarcoplasmic reticular ca2+ by contracting 3- 

times with 10 pM phenylephrine in a ca2+-free solution. Tissues were then permeabilized 

at 5" C for 45 minutes with p-escin (40 pM for FA and 100 pM for SA; the higher 

concentration for SA was used because of its thicker media), and continued for 60 minutes 

at 30" C. The initial treatment with p-escin at a low temperature helps the slow penetration 

and/or binding of p-escin to the surface membrane of the smooth muscle cells (Masuo, 

Reardon et al. 1994). p-escin was dissolved in a "relaxing solution" contained 74.1 mM 

potassium methanesulphonate, 4.0 mM magnesium methanesulphonate, 4 mM Na2ATP, 4 

mM EGTA, 5 mM creatine phosphate, 4 mM EGTA and 30 mM PIPES, neutralized with 1 

M KOH to pH 7.1 at 20" C. Ionic strength was kept constant at 0.18 M by adjusting the 

concentration of potassium methanesulfonate. To activate muscle contraction at ca2+- 

clamped levels of 1 gM (pCa = 6) free ca2+, a "contracting solution" was made by 

including the appropriate volume of a 1 M CaC12 stock (Fluka Chemicals) as determined 

using WEBMAXC (Patton, Thompson et al. 2004). Calmodulin (1 pM) was added to the 

solutions throughout each experiment to compensate for its loss during pemeabilization. 

To induce relaxation for relaxation velocity measurements, tissues pre-contracted by pCa = 

6 contracting solution were rapidly washed in the relaxing solution (pCa = 9) that included 

3 pM wortmannin to inhibit MLC kinase activity. During relaxation, one set of tissues was 

frozen and MLC phosphorylation was measured. 

2.10 Latchbridge model simulation 
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The Hai-Murphy kinetic 4-state latchbridge model was simulated using MATLab 

6.5 with Simulink 5.0 (The Mathworks, Inc.) using the same initial conditions and 

assumptions as those used by Hai and Murphy (Hai and Murphy 1988). Because 

MATLAB 6.5 permits the use of time-varying constants, this'feature was en~ployed for 

rate constants simulating changes in MLC kinase and phosphatase activities to more 

closely reflect the time-varying changes in [ca2+]i (and thus, MLC kinase activity), and 

regulation of MLCP by ROK (reviewed by (Ratz, Berg et al. 2005)). 

2.11 Drugs 

Receptor antagonists used to prevent endogenous receptor activation due to 

neurotransmitter release upon KC1-stimulation of tissues were, for arteries, 1 pM 

phentolamine, and for detrusor, 1 pM atropine. p-escin was used to permeabilize tissues, 

and calmodulin was added to replace that lost by permeabilization. All of the above were 

from Sigma (St. Louis, MO). Wortmannin, Y-27632, cytochalasin-D and ionomycin were 

from Calbiochem (La Jolla, CA). p-escin was dissolved in DMSO for a stock concentration 

of 10 mM. Cytochalasin-D and ionomycin were dissolved in 100% ethanol for stock 

solutions of 10 mM. Vehicles (DMSO and ethanol) were added to control tissues at no 

more than 0.1 %, which had no effect on contractions. All other drugs were dissolved in 

distilled water. 

2.12 Statistics 
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The null hypothesis was examined using Students' t-test (when 2 groups were 

compared) or using a one-way analysis of variance (ANOVA). To determine differences 

between groups following ANOVA, the Student-Neuman-Keuls post-hoc test was used. In 

all cases, the null hypothesis was rejected at P<0.05. For each study described, the n value 

was equal to the number of rabbits from which arteries were taken. Statistical analyses and 

curve fitting were performed using Prism 3.02 (Graphpad Software, Inc., San Diego, CA). 
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CHAPTER 3 RESULTS 

3.1 Structure 

Of the two major branch arteries that bifurcate from the femoral artery (FA) just 

cranial to the knee, only the deep femoral (DF) both grossly (Fig 3Aa) and histologically 

(Figs 3Ab-3Ad) represented an extension of the FA, while the saphenous artery (SA) was 

structurally different than the FA (Fig 3Ab = DF; Fig 3Ac = FA; Fig 3Ad = SA). For 

example, FA and DF had equivalent medial thicknesses (Fig 3B) and numbers of cell 

layers within the media (Fig 3C) and nearly equivalent optimum lengths for muscle 

contraction (Lo; Fig 3D), a muscle mechanical measurement that reflects artery lumen 

diameter. However, compared to FA, SA media was -2-fold thicker (Fig 3B) because of 

-2-fold more medial cell layers (Fig 3C), but displayed a shorter Lo by - '/z (Fig 3D) 

correlating with a smaller zero-load lumen diameter (data not shown). 
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Figure 3. Gross (Aa) and fine (Ab-Ad) structures of rabbit femoral (FA; Aa & Ac), deep 
femoral (DF; Aa & Ab) and saphenous (SA; Aa & Ad) arteries. DF and SA bifurcate from 
the FA. FA and DF displayed the same medial thickness (B) and numbers of cell layers 
within the media (C) and nearly equivalent optimum lengths for muscle contraction (Lo, 
D), a muscle mechanical measurement that reflects lumen diameter. SA was -2-fold 
thicker because of -2-fold more medial cell layers, but displayed a shorter Lo correlating 
with a smaller lumen diameter. Data in B-D are means + SE. n = 3, except Lo, where n = 

13. * = P < 0.05 compared to FA. 
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3.2 Stress, [ca2+]i and MLC phosphorylation 

KC1 produced a tonic contraction in the FA and DF with equivalent time-dependent 

force values (Fig 4A & 4B), but produced a phasic contraction in the SA (Fig 4A). The 

peak stress value produced by SA was equal to the maximum tonic stress produced by the 

FA (Fig 3A). Stresses produced by the SA were reduced from the peak values by 5 and 10 

min to a value -60% that produced by the FA (Fig 4A). A maximum phenylephrine 

concentration (1 0 pM), like KC1, also produced tonic and phasic contractions in, 

respectively, FA and SA (data not shown). Despite divergent temporal changes in stress, 

FA and SA produced equivalent temporal changes in [ca2+]i when stimulated with KC1 

(Figs 4C & 4D). Thus, the difference in steady-state stress between FA and SA could not 

be ascribed to a reduction in [ca2+]i. 

KC1 produced a rapid increase in the degree of MLC phosphorylation from a basal 

value of -5% to -40% within 4 sec in both FA and SA (Fig 5A). However, MLC 

phosphorylation continued to increase to over 60% by 10 sec in FA, but remained at -40% 

in SA, a value statistically lower than that produced by FA (Fig 5A). MLC 

phosphorylation declined in both FA and SA to lower steady-state values. However, SA 

reached a steady-state MLC phosphorylation value of -28% within 30 sec and remained at 

that level for at least 10 min, while FA produced a more gradual decline to a steady-state 

value at 10 min of -42% (Fig 5A). The correlation in MLC phosphorylation and stress 

values (Fig 5B) suggest that the phasic nature of the KC1-induced contraction produced in 

SA was caused by the reduced level of steady-state MLC phosphorylation in SA compared 

to FA. 
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Figure 4. Force and [ca2']i in KCI-stimulated Femoral (FA) and saphenous (SA) arteries. 
FA and SA produced equivalent early (1 6.2 * 1.2 sec) peak increases in stress upon 
stimulation with KC1 (-1.2 x lo5 ~ / m ~ )  that remained at high levels for at least 10 min in 
FA but declined by 5 min in SA to -0.8 x lo5 ~ / m ~  (A). FA and deep femoral (DF) artery, 
and FA and SA, produced identical time-dependent KC1-induced profiles in, respectively, 
force (B) and [ca2+]i (C & D). "B" and "Pk" in panel D are, respectively, Basal and peak. 
Data are means (solid and dashed lines A-C and bars, D) * SE (dotted lines in A & B). For 
clarity, SE values were removed from the curves in C and included in D. B: n = 10; C: n = 

3; D: n = 6. * = P < 0.05 compared to FA. 
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Figure 5. Basal (time = 0) and KC1-induced temporal increases in MLC phosphorylation 
(A) and the relationship between active stress and. MLC phosphorylation (B) in femoral 
artery (FA) and saphenous artery (SA). Data are means k SE. For phosphorylation data, n 
= 4- 10.. = P < 0.05 compared to FA. Stress data is replotted from Fig 4. 
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3.3 Estimate of MLCP activity and expression of MLCP 

The rate of relaxation of permeabilized arterial smooth muscle is limited by the rate 

of MLCP activity (Mitsui, Kitazawa et al. 1994). Thus, the rate of relaxation from a pre- 

contracted state induced by exposure of permeabilized tissues to a ca2+-free solution 

containing a MLC kinase inhibitor can be used as an indirect measure of the MLCP 

activity in ca2+-clamped but otherwise intact smooth muscle tissue (Lee, Li et al. 1997). 

Our data showed that SA produced a much more rapid relaxation compared to FA when 

tissues precontracted at pCa = 6 were exposed to a relaxing solution (containing EGTA, 

see "Methods") and the MLC kinase inhibitor, wortmannin (Fig 6A). The half-time for 

relaxation was nearly 2 min in FA, but less than 1 min in SA (Fig 6B). To ensure that 

relaxation rates reflected rates of MLC dephosphorylation in both FA and SA, MLC 

phosphorylation and force were measured simultaneously in one set of tissues. The nearly 

linear relationship between MLC phosphorylation and force (Fig 6C & 6D) supports the 

conclusion that relaxation rates in permeabilized tissues can be a surrogate measure of 

MLC dephosphorylation, and reflect MLCP activity (Mitsui, Kitazawa et al. 1994; Lee, Li 

et al. 1997). These data suggest that the lower MLC phosphorylation levels produced in 

intact (not permeabilized) SA compared to FA during a KC1-induced contraction are 

caused by a higher intrinsic MLCP activity in SA compared to FA. 

We compared, in FA and SA, expressed levels of MLCP catalytic (PP16) and large 

regulatory (MYPTl) subunits, and ROK, an enzyme that plays a key role in the regulation 

of MLCP activity in KC1-induced tonic contractions (reviewed by (Ratz, Berg et al. 2005). 

SA expressed nearly 2-fold more PP16 and -1.3-fold more MYPTl than did FA, but both 
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arteries expressed equal levels of ROK (Fig 7). These data suggest that one possible cause 

for increased MLCP activity in SA compared to FA is that SA expresses more MLCP such 

that the overall MLCP-to-kinase activity ratio is higher in SA. 

3.4 Effects of Wortmannin and Y-27632 

To determine whether MLC kinase and ROK-dependent MLCP play similar or 

different roles in SA and FA, intact tissues were contracted in the presence of the MLC 

kinase inhibitor, wortmannin, and the ROK inhibitor, Y-27632. Wortmannin produced 

identical inhibitions of both peak (Fig 8A) and steady-state (Fig 8B) contractions in SA 

and FA. Y-27632 likewise inhibited steady-state contractions in SA and FA with equal 

potency (Fig 8D), and had no effect on the peak contractile response produced by SA and 

FA (Fig 8C). In support of our previous finding (Ratz, Meehl et al. 2002), Y-27632 

inhibited both peak and steady-state contractions of the phasic bladder smooth muscle 

(Figs 8C & 8D, triangles). These data suggest that additional regulatory systems other than 

MLC kinase and ROK-dependent MLCP are not required to explain KC1-induced steady- 

state (tonic-phase) contractions of SA and FA. 
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Figure 6 .  Time-dependent relaxation (A & C) and reduction in MLC phosphorylation (C), 
half-time for relaxation (B), and relationship between force and MLC phosphorylation 
produced during relaxation in P-escin-permeabilized rings of femoral artery (FA) and 
saphenous artery (SA). "F" and "Mp" in panel C are, respectively, force and MLC 
phosphorylation. Data in A are an example of a force tracing. Data in C & D are from one 
artery (n = 1). Data in B are means * SE. n =4.. = P < 0.05 compared to FA. 
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Figure 7. A comparison of expression of PP16, MYPTl and ROKa in femoral artery (FA) 
and saphenous artery (SA). PPl6 = catalytic subunit of protein phosphatase -1 (MLCP is a 
PP16 subtype), MYPTl = myosin phosphatase targeting subunit-1, the large molecular 
weight regulatory subunit of MLCP, ROKa = rhoA kinase, a negative regulator of MLCP. 
Gel lanes were loaded with 20 pg (for PP16), 10 pg (for MYPTl) and 50 pg (for ROKa). 
Data for SA are means * SE. n = 6.. = P < 0.05 compared to FA. 
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3.5 Latchbridge model 

The Hai-Murphy 4-state kinetic latchbridge model was en~ployed to determine 

whether the reduction in KC1-induced steady-state MLC phosphorylation in SA compared 

to FA was sufficient to explain the phasic contractile behavior of SA. We used modeling 

rate constants (in s-l) that were very similar to those used by Hai and Murphy to predict the 

behavior of the tonic swine carotid artery (Hai and Murphy 1988). However, rather than 

stepping kl & k6 values from 0 to 0.55 for 5 sec and then down to 0.30 for the remainder of 

the simulated stimulation period to mimic changes in MLC kinase activity due to changes 

in [ca2+li (Hai and Murphy 1988), we used similar values but modeled a more gradual 

change to more closely follow the change in [ca2+]i measured in SA and FA (Figs 9C & 

9D). We also modeled a small temporal change in k2 & ks values to reflect recent data 

(Ratz, Berg et al. 2005) indicating that KC1 can activate ROK and produce a transient 

small increase in MYPTl phosphorylation that may transiently reduce MLCP activity 

(Figs 9E and 7F). Using a lq value of 0.05, a k3 value of 0.4, and, as in the original Hai- 

Murphy model (Hai and Murphy 1988), a k7 (latchbridge) value 111 oth that of the k value 

(k7 = 0.005), the modeled temporal change in MLC phosphorylation fit closely the 

empirically-derived MLC phosphorylation data for FA (Fig 9G). Our data showing that 

steady-state MLC phosphorylation (see Fig 6), but not [ca2+]i (see Fig 4D), was less in SA 

than FA suggested that MLCP in SA was greater than that in FA. Thus, k2 & ks values 

used to model FA behavior were doubled to model SA behavior (Fig 9F). The resulting 

modeled change in MLC phosphorylation fairly closely matched the empirical MLC 

phosphorylation data for SA (Fig 9H). 
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The force response predicted based on a latchbridge-to-phosphorylated crossbridge 

detachment ratio (k7 / k4) of 0.1 very closely matched our empirical data for FA (Fig 9A, 

Model LFA), but was a poor match for SA (Fig 9B, Model LSA). When the detachment rate 

for a latchbridge was made to equal the detachment rate for a'phosphorylated crossbridge 

(i.e., k7 / h = l), the modeled force profile more closely fit the actual empirical data for SA 

(Fig 9B, Model NLs~) .  

Because of the steeply hyperbolic dependency of steady-state force on steady-state 

MLC phosphorylation in tonic arterial smooth muscle (Ratz, Hai et al. 1989), and because 

force "saturates" at modest levels of MLC phosphorylation (Ratz, Hai et al. 1989; Ratz 

1993), a reduction in MLC phosphorylation from over 40% to just under 30% will not 

necessarily result in a significant reduction in force. Rather, total force will remain 

relatively constant as the fraction of phosphorylated, attached crossbridges (AMp) is 

reduced and the fraction of unphosphorylated, attached crossbridges (AM, latchbridges) is 

proportionally increased (Fig 1 OB). That is, the modeled force profiles for FA and SA were 

found to be nearly equivalent despite large differences in MLC phosphorylation values 

because the proportion of crossbridges contributing to steady-state (5 min) force for the FA 

was -60% AM (latchbridge) and -40% AMp (phosphorylated, attached crossbridge), 

whereas that for SA was -73% AM and -27% AMp (Fig 10B). Thus, the reason why a 

reduction in the level of MLC phosphorylation from -42% to -28% did not cause a 

comparable reduction in force in the 4-state kinetic simulation has a straightforward and 

readily predictable explanation based on the Hai-Murphy latchbridge model. Elimination 
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Figure 9. Hai-Murphy 4-state kinetic latchbridge model simulation (dash-dot lines) and 
empirical data (solid lines and open symbols) for femoral artery (FA) and saphenous artery 
(SA). LFA (A) and L S ~  (B) equal simulations where k7 = 0.1-fold k4 (i.e., k7 refers to the 
very slow detachment rate of a latchbridge) for, respectively, FA and SA. NLsA (B) equals 
a simulation for SA where k7 = k4 = 0.05 (i-e., the rate of detachment of AM = rate of 
detachment of AMP, and thus, reflects the absence of a latchbridge state). Empirical data 
for C & D are normalized ca2+ tracings derived from Fig 4C. Empirical MLC 
phosphorylation data are from Fig 5A. 
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Figure 10. Hai-Murphy 4-state kinetic latchbridge model (A, right side) and kinetic 
constants (A, left side) used for the simulation displayed in Fig 9 and in panels B & C of 
this figure. A = actin, M = myosin, Mp = MLC phosphorylated species where myosin is in 
the unattached state, AMp = MLC phosphorylated species where myosin is in the actin- 
attached (crossbridge) state, AM = dephosphorylated, attached crossbridges that can bear a 
load (latchbridges). Total force = AM + AMP. Total MLC phosphorylation = Mp + AMP. 
LFA, LSA refer to model simulations where k7 = 0.1-fold k4 (latchbridge is included) for 
both femoral artery (FA) and saphenous artery (SA). N L s ~  refers to a model simulation 
where k7 = kl (no latchbridge is included). Note that model simulations designed to 
provide steady-state Mp values > 20% permit strong force maintenance because of 
latchbridge formation (B). Compared to the relatively low level of latchbridge species 
formed (B, dashed line, AM) at a relatively high level of simulated Mp (B, dashed line, 
AMP) mimicking empirical data from the tonic, FA, a lower level of simulated Mp (B, 
solid line, AMP) that mimics the level found to occur in the phasic SA yields a higher level 
of the latchbridge species (B, solid line, AM). Thus, despite a lower level of MLC 
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phosphorylation in SA, latchbridge formation would disallow phasic contractile behavior 
(AMP + AM = force). Absence of the latchbridge state (C, NLsA, k7 = kq) in the simulation 
permits a more phasic contraction (C, solid line compared to dashed line, AMp + AM) that 
more closely mimics the empirical temporal force profile produced in SA upon KC1- 
induced stimulation. 
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Figure 11. A hyperbolic + linear curve provides a good modeling fit (r2 > 0.97) for force 
redevelopment following a quick step-decrease in muscle length of 10% (quick release, 
Q.R., inset of panel A) during the steady-state of a KC1-induced contraction for both 
femoral artery (FA) and saphenous artery (SA). Half-lives (Tin) and slopes (m) of the 
curves for FA and SA and the individual hyperbolic and linear portions of the curves are 
shown in panel B. n = 4. 
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of the latchbridge (without eliminating the myosin species, AM) by making k4 and k7 

equal (no latch; NLSA, Fig 10) caused force to become phasic as apposed to tonic because 

of a reduction in the amount of AM present in SA compared to FA (Fig 1 OC). 

3.6 Rates of force redevelopment upon quick-release 

Steady-state levels of MLC phosphorylation correlate with steady-state levels of 

the velocity of muscle shortening (Ratz, Hai et al. 1989), and the rate of force 

redevelopment upon quick-release (Q.R., Fig 11A) is a measure of the velocity of muscle 

shortening (Dillon and Murphy 1982). The proposed reason for a correlation between 

MLC phosphorylation levels and the rate of force redevelopment is that the cycling 

crossbridge-to-latchbridge ratio (AMP / AM) is higher at higher levels of MLC 

phosphorylation (see Fig 10). Thus, if SA contains latchbridges, then SA should re- 

contract more slowly than FA upon quick-release at -1 0 min of contraction because SA 

produced significantly lower MLC phosphorylation levels at this time (see Fig 5). Our 

empirical data revealed the opposite. Namely, that the rate of force redevelopment 

produced by SA was signficantly higher than that for FA (Fig 11). Using a curve fitting 

program (Graphpad Prism), the rate of force redevelopment for both arteries produced a 

good fit (r2 = 0.996 for FA, 0.974 for SA) to an equation consisting of one fast hyperbolic 

and one slower linear component (Fig 1 1 A). The half-time (TI/,) for force redevelopment 

for the hyperbolic component of FA was over 7-fold longer than that for SA (i.e., the rate 

of force redevelopment for SA was over 7-fold faster than FA; Fig 1 lB), and the slope of 

the slower, linear component for SA (msA) was 3-fold faster than for FA (mFA; Fig 11B). 
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These data together support the hypothesis that FA does, but SA does not, form 

latchbridges to maintain high levels of steady-state force. 

3.7 Smooth muscle motor protein expression levels 

Higher rates of force redevelopment for SA compared to FA support the hypothesis that 

SA contains "faster" motor protein isoforms than FA ((Arner, Lofgren et al. 2003) for 

review). To test this hypothesis, the relative expression of 17 kDa essential myosin light 

chain (MLCI7) isoforms, MLC17, and MLC1 7b, were examined using 2-D PAGE, and 

smooth muscle myosin heavy chain (MHC) isoforms that do (SMB) and do not (SMA) 

contain a 7 amino acid insert were examined using Western Blot and selective antibodies. 

Tonic muscles, defined as those smooth muscles that produce sustained, high levels of 

steady-state force, and phasic muscles, defined as those smooth muscles that produce 

initial high levels of force that decline to much lower steady-state values, were 

investigated. The tonic FA, DF and renal artery (RA) displayed -50-60% MLCI7,, whereas 

the phasic SA and detrusor (Det) displayed 90-100% MLC17, (Fig 12a). Tonic aorta (Ao), 

carotid artery (CA), FA, RA and stomach fundus (Fun) displayed higher relative 

expression levels of SMA compared to SMB, whereas phasic SA and stomach antrum 

(Ant) displayed higher relative levels of SMB compared to SMA (Figs 12Bd & 12Be). 

None of the smooth muscles examined expressed enough non-n~uscle myosin to be 

detected when compared to an equal protein loading of platelets that express non-muscle 

rather than smooth muscle myosin (Fig 12Bc). These data support the notion that SA 

produced faster force redevelopment than FA despite lower MLC phosphorylation levels at 
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Figure 12. Essential myosin light chain (MLC17) isoform expression levels for the tonic 
femoral artery (FA), deep femoral artery (DF) and renal artery (RA) compared to the 
phasic saphenous artery (SA) and detrusor (Det; A). Panel B displays total protein (Ba) and 
relative levels of myosin (Bb), non-muscle myosin (Bc), and smooth muscle myosin heavy 
chain (SM MHC) expression for the "slow" SMA isoform (Bd) and "fast" SMA isoform 
(Be) for tonic aorta (Ao), carotid artery (CA), FA, RA and stomach fundus (Fun) compared 
to the phasic SA and stomach antrum (Ant). Plat = rabbit platelet. Data in panel A are 
means * SE, n = 4-5.. = P < 0.05. Data for panel B is an example derived from an n = 3. 
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Figure 13. Comparison of proteins expressed in a high abundance by tonic and phasic 
arteries (respectively, femoral, FA, and saphenous, SA, arteries), and phasic visceral 
smooth muscle (detrusor; Det). Proteins identified with Coomassie blue stain are filamin 
(Filam), myosin heavy chain (MHC), caldesmon (CalD), a-actinin (a -Act), vimentin (V), 
desmin (D), actin (Actin), tropomyosin (Tm), calponin (CalP) and SM22. A: Example of a 
stained gel; all lanes were loaded with 10 pg protein. B: quantification of bands normalized 
in-lane to actin. Data are means * SE. n = 4.. = P < 0.05 compared to FA. 
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Figure 14. Comparison of the smooth muscle proteome, limited to a pI range of 4-7 and a 
molecular weight range of 6.4-200 m a ,  for femoral artery (FA), saphenous artery (SA) 
and detrusor (Det). Aa: example of a SYPRO ruby-stained 2-D gel of SA. Ab & Ac: Venn 
diagrams (not to scale) showing that all proteins identified in the comparisons between FA 
and SA could be found in both groups (b), but that of the 389 proteins found when 
comparing FA to Det, 27 were only found in FA but not in Det, and 9 were found only in 
Det and not in FA (c). B: quantification of proteins found in common but that were 
expressed by one smooth muscle at 1.5-fold greater or lesser levels compared to the other 
smooth muscle.. = statistically different. Nearly. = average values for protein expression 
levels were 1.5-fold different, but the difference was not statistically significant 
presumably because of the low n value. n = 3. 



www.manaraa.com

0 2 4  6 8 1 0  
- Pk 1 0' 

Time (min) 

Figure 15. Effect of an inhibitor of actin polymerization, cytochalasin-D (cyto-D; CD), on 
the strength of the overall contractions (A), and specifically, on the early phasic (Pk) and 
tonic (1 0 ) portions of contractions (B-D), produced by KC1 in femoral artery (FA) and 
saphenous artery (SA). The percent difference between control (Con) and cyto-D-treated 
tissues is shown in panel D. Data are means k SE. n = 4.. = P < 0.05 compared to control 
(B & C) and compared to FA (D). 
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steady-state because SA expressed quantitatively more "faster" (SMB and MLC17a) 

compared to "slower" (SMA and MLC17t,) myosin isoforms ((Amer, Lofgren et al. 2003). 

3.8 Proteomic analysis 

Based on its temporal contractile profile and motor protein isoform composition, 

the SA may be categorized along with detrusor and stomach antrum as a phasic smooth 

nluscle. Thus, the contractile phenotype and the motor protein genotype of SA are more 

similar to that of a visceral smooth muscle than to its "parent" tonic arterial smooth 

muscle, the FA. Regulation of smooth muscle contraction requires the interaction of many 

complex signaling, metabolic and structural systems, and whether some arterial muscles 

are more closely related overall to visceral smooth muscles or to each other is an important 

question that remains to be determined. To determine whether the overall protein 

expression profile of SA is more like that of a phasic visceral smooth muscle or a tonic 

arterial smooth muscle, an initial proteomic analysis was performed. 

The abundance of highly-expressed proteins relative to actin in FA, SA and 

detrusor were compared using 1 -D PAGE (Fig 13A). Of the 9 abundantly expressed 

proteins readily identified by Coomassie blue staining that likely participate in contraction 

(Weber, Seto et al. 2000), 4, filamin, MHC, caldesmon (CalD) and desmin, were expressed 

in greater, and 1, calponin (CalP), was expressed in lesser abundance in the phasic, 

detrusor compared to tonic FA. None of the 9 proteins displayed differential expression 

when comparing SA to FA (Fig 13B). 
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A more comprehensive analysis was performed using 2-D PAGE and PDQuest 

software to compare protein expression within a pI range of 4-7 and a molecular weight 

range of 6.4-200 kDa (Fig 14Aa). All of the 297 proteins identified on 6 gels from an n = 3 

of FA were also identified on 6 gels from an n = 3 of SA (Fig 14Ab). Of 389 proteins 

identified on 6 gels from an n = 3 of FA and on 6 gels from an n = 3 of Det, 27 proteins 

were expressed by FA but not by detrusor, and 9 proteins were expressed by detrusor and 

not by FA (Fig 14Ab). In addition, of the proteins expressed in common, the levels of 

expressed proteins were more different when comparing FA and Det than when comparing 

FA and SA (Fig 14B). In particular, -1 5 proteins displayed more than a 1.5-fold difference 

in level of expression when comparing FA and Det whereas only 6 proteins displayed a 

1.5-fold difference in level of expression when comparing FA and SA (Fig 14, cross- 

hatched and checkered bars). When including proteins that displayed a trend for a 1.5-fold 

difference in expression (numbers were nearly significantly different, hatched bars in Fig 

14B), there were nearly 60 proteins with high expression-level differences when 

comparing FA and Det, but only -25 proteins displaying differences in expression levels 

when comparing FA and SA. These data suggest that based on commonality of expressed 

proteins, FA and SA are more genotypically similar than FA and Det. 

3.9 Effect of cytochalasin-D 

To test the hypothesis that the tonic-phase of arterial contractions are maintained by 

increases in actin polymerization, FA and SA were contracted in the presence of 

cytochalasin-D, an agent that binds to the barbed-end of actin to inhibit polymerization 
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(reviewed by (Cooper 1987)). Exposure of tissues to 0.2 pM Cytochalasin-D for 15 min 

prior to stimulation with KCl, and during the KC1-induced contraction, caused a small (-5- 

10%) inhibition in the early peak force in both FA (Pk, Figs 15B & 15D) and SA (Pk, Figs 

15C & 15D), and a small (-5-10%) reduction in the average tonic force in SA that was not 

statistically different (10 , Figs 15C & 15D). Cytochalasin-D produced a larger, -20% 

reduction in tonic force produced by KC1 in FA (10 , Figs 15B & 15D). These data suggest 

that actin polymerization contributes to tonic force maintenance in FA but not SA. 
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CHAPTER 4 DISCUSSION 

Results from the present study support the hypothesis that differential motor protein 

isoform expression and actin polymerization determine whether arterial smooth muscle 

produces a transient (phasic) or sustained (tonic) isometric contraction. Our data suggest 

.that latchbridges were formed only by FA and not SA, and that the determining factor for 

latchbridge formation was expression of "slower" myosin isoforms. SA expressed only the 

"faster" myosin isoforms, did not display enhanced actin polymerization during a KCI- 

induced contraction, as did FA, and did not maintain high levels of stress. Thus, we 

propose that the absence of both latchbridge formation and enhanced actin polymerization 

in the phasic SA precluded its ability to maintain high levels of force for the duration of a 

KC1-induced stimulation period. However, differential regulation of other proteins, such as 

thin-filament regulatory proteins, can not at this time be ruled out as playing a role in 

controlling force maintenance. Although our data clearly demonstrate that actin 

polymerization was enhanced during the steady-state of a KC1-induced contraction in FA 

and not SA, the mechanism causing this differential regulation of actin polymerization 

remains to be determined. 
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The concept that actin polymerization plays an important role in regulation of 

contraction has been described for airway smooth muscle, another tonic muscle (reviewed 

by (Gerthoffer and Gunst 2001)), and very recently, for the myogenic contraction of 

arterioles, a tonic contraction produced in response to increases in transmural pressure 

(Flavahan, Bailey et al. 2005). Wright and colleagues, using rat aorta (Wright and Hurn 

1994; Battistella-Patterson, Wang et al. 1997), demonstrated that the entire tonic- phase, 

but not the early phasic-phase, of a KC1-induced contraction was dependent on actin 

polymerization. We found that the early phasic phase of contraction in both FA and SA 

was inhibited -10% by cytochalasin-D when used at 0.2 pM, but that the tonic portion of a 

contraction produced in FA, but not SA, was inhibited more than 20%. What distinguishes 

our model from that described by Wright and colleagues, is that our model includes both 

increased actin polymerization and latchbridges as playing important roles in force 

maintenance in tonic arterial muscle because actin polymerization does not appear to 

account entirely for tonic force maintenance, at least in the rabbit FA. Precisely how 

enhanced actin polymerization permitted enhanced stress-maintenance was not determined, 

but because force redeveloped upon quick-release, crossbridge cycling appeared to remain 

the primary (perhaps sole) force generator. 

A hallmark of tonic smooth muscle is an ability to contract to high stress levels 

indefinitely without fatiguing (Murphy 1988; Murphy 1994). This characteristic would 

seem crucial for the normal physiological function of arterial smooth muscle, which must 
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contract against high pressures, sometimes for very long durations. Most visceral smooth 

muscles, with the exception of sphincters and the stomach fundus, can produce high levels 

of stress only transiently, and isometric contractions of these muscles is therefore 

characterized as phasic. The subcellular mechanisms responsible for causing tonic versus 

phasic smooth muscle contractile behavior have been a matter of considerable debate, in 

part, because comparisons have been made between tonic arterial muscles and phasic 

visceral n~uscles. Regulation of visceral smooth n~uscles can be significantly different than 

regulation of tonic arterial smooth muscles (reviewed by (Harnett, Cao et al. 2005)). We 

confirmed this notion by showing that, whereas the phasic portion of a KC1-induced 

contraction produced by SA and FA were not affected by the ROK inhibitor, Y-27632, 

both phasic and tonic force con~ponents produced by detrusor were inhibited equally well 

by Y-27632 (see Fig 6). Also, our preliminary proteomic analysis comparing visceral 

detrusor with arterial n~uscle revealed that detrusor and FA were genotypically more 

different than SA and FA. To our knowledge, the present study is the 1" to directly 

compare arterial segments that exist anatomically adjacent to one another within the same 

vascular tree, that are of comparable size, contract to identical levels of stress and that 

clearly display tonic versus phasic contractile behavior. This comparison enabled us to 

determine that, unlike the tonic FA, the phasic SA did not appear to enter the latch-state. 

The latch-state is characterized by maintenance of high force levels in the face of 

falling indices of muscle activation, including [ca2+]i, MLC phosphorylation and the 

maximum rate of crossbridge cycling. Although [ca2+]i and MLC phosphorylation fell to 
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low levels after initially reaching high levels early (within -16 sec) upon muscle 

stimulation by KCI, stress produced by SA likewise fell -40% compared to the tonic FA. 

As anticipated, a computer simulation based on the latchbridge model demonstrated that 

the reductions in MLC phosphorylation by 5 and 10 min frod the early, high, peak values 

did not predict a fall in stress in FA or SA. Rather, the latchbridge model predicted that the 

temporal stress profile should have been maintained at nearly the same level in SA and FA 

even though MLC phosphorylation fell to lower levels in SA (-28%) than in FA (-42%; 

see Figs 7B and 8B, for example). This is because the latchbridge model predicts that 

stress "saturates" at MLC phosphorylation values above -20% (Hai and Murphy 1988). A 

decrease in MLC phosphorylation from 40% to 20% causes an increase in the fraction of 

myosin forming latchbridges (Hai and Murphy 1988). In fact, the signature feature of the 

latchbridge model is that falling levels of MLC phosphorylation permit high force 

maintenance at a high energy economy by forming increased numbers of latchbridges 

(reviewed by (Murphy 1988; Murphy, Rembold et al. 1990)). Thus, the latchbridge model 

predicts that, at steady-state, SA should contain more latchbridges than FA (see Fig 8B). 

But if this were the case, then based on the knowledge that a higher ratio of latchbridges- 

to-cycling (phosphorylated) crossbridges would impede crossbridge cycling velocities 

(Ratz, Hai et al. 1989), force redevelopment at steady-state, a measure of crossbridge 

cycling velocity (Dillon and Murphy 1982), should be lower in SA than in FA. This was 

found not to be true. In fact, SA redeveloped force at a much higher rate than did FA (see 

Fig 9), which is consistent with a report by Eddinger and colleagues that single smooth 

muscle cells isolated from SA shorten more rapidy than those isolated from FA (Shenvood 
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and Eddinger 2002). In short, the hypothesis that the motor protein isoforms of SA formed 

latchbridges is not supported by our data showing that steady-state force fell nearly by half 

over a 5 min period from initiation of a KC1 stimulus, and that SA displayed much higher 

apparent crossbridge cycling rates despite much lower levels of MLC phosphorylation than 

FA. 

The lower levels of MLC phosphorylation produced by SA compared to FA could 

not be explained by a lower level of [ca2+]i (see Fig 2D). Also, our data using inhibitors of 

MLC kinase and ROK suggest that additional MLC phosphorylation regulatory systems 

need not be invoked to explain the differential MLC phosphorylation values comparing FA 

and SA. Smooth muscle MLC phosphatase catalytic subunit is a PP16 serlthr protein 

phosphatase isoform (Ito, Nakano et al. 2004), and SA expressed nearly 2-fold more 

PPI than did FA. Moreover, SA expressed -20% more MYPTI, the regulatory subunit 

of MLC phosphatase. Thus, one possible scenario is that because of higher cellular levels 

of MLC phosphatase in SA compared to FA, the MLC phosphatase-to-kinase ratio was 

likewise elevated, reducing the steady-state level of MLC phosphorylation for a given 

[ca2+]i. This hypothesis is supported by data obtained in permeabilized, ca2+-clamped 

tissues, suggesting that MLC phosphatase activity was -2-fold greater in SA compared to 

FA. 

There has been a great deal of speculation about the function of different MHC and 

MLCI7 isoforrns (reviewed by (Arner, Lofgren et al. 2003; Morano 2003; Ogut and 
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Brozovich 2003)). In short, the current thought is that smooth muscles that display the 

phasic phenotype also display higher relative expression of "faster" myosin isoforms (i.e., 

SMB and M L C I ~ ~  compared to SMA and MLC17& reviewed by (Arner, Lofgren et al. 

2003)). Results from the present study support this hypothesis, and provide evidence that 

the latch-state is not supported by motor proteins expressed by the phasic phenotype. It is 

interesting that the phasic SA, a branch artery of the FA, displayed such a dramatically 

different motor protein genotype than its "parent" artery (see Fig 10 and (Shenvood and 

Eddinger 2002)), but did not display as dramatic a difference in overall genotypic protein 

expression as did the detrusor compared to FA. However, both the phasic SA and phasic 

visceral smooth muscles appear to display nearly identical motor protein isoform 

expression. In conclusion, our data support a model whereby phasic smooth muscle 

behavior requires an absence of "slow" motor proteins, and therefore, an absence of 

latchbridge formation, and an absence of stimulus-induced increases in actin 

polymerization that could strengthen the tonic-phase of contraction. However, our data 

also support the notion that not all phasic smooth muscle contractions are regulated by 

identical signaling systems, and that FA and SA contractions are likely regulated by more 

similar mechanisms than FA and detrusor. 
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